X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC
نویسندگان
چکیده
Fluorescence-yield X-ray absorption fine structure (FY-XAFS) is extensively used for investigating atomic-scale local structures around specific elements in functional materials. However, conventional FY-XAFS instruments frequently cannot cover trace light elements, for example dopants in wide gap semiconductors, because of insufficient energy resolution of semiconductor X-ray detectors. Here we introduce a superconducting XAFS (SC-XAFS) apparatus to measure X-ray absorption near-edge structure (XANES) of n-type dopant N atoms (4 ×10(19) cm(-3)) implanted at 500°C into 4H-SiC substrates annealed subsequently. The XANES spectra and ab initio multiple scattering calculations indicate that the N atoms almost completely substitute for the C sites, associated with a possible existence of local CN regions, in the as-implanted state. This is a reason why hot implantation is necessary for dopant activation in ion implantation. The SC-XAFS apparatus may play an important role in improving doping processes for energy-saving wide-gap semiconductors and other functional materials.
منابع مشابه
Superconducting high-resolution X-ray detectors for metalloprotein L-edge spectroscopy
Superconducting tunnel junctions (STJs) can be used as high-resolution energy-dispersive X-ray detectors. STJ detectors are based on the measurement of an increased tunneling current from excess charge carriers that are excited above the superconducting energy gap by the absorption of an X-ray. Nb-based STJ detectors have a theoretical energy resolution limit below 5 eV FWHM for X-ray energies ...
متن کاملQuaternary Cu (InxGa1-x) Se2 Nanoparticles Synthesis Using Heating-up Method for Photovoltaic Applications
In this paper, tetragonal chalcopyrite (CIGS) Cu(InxGa1-x)Se2 with x=0, 0.5, 0.8, 1 are synthesized by heating-up method. These nanoparticle structures differ in morphology and absorption properties due to the synthesis temperatures of 250, 255, 260, 265, 270 and 280 ºC, and gallium molar ratio over the total gallium and indium contents. These features are studied using scanning electron m...
متن کاملCharge transfer and electronic doping in nitrogen-doped graphene
Understanding the modification of the graphene's electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved ...
متن کاملMonopeptide versus monopeptoid: insights on structure and hydration of aqueous alanine and sarcosine via X-ray absorption spectroscopy.
Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines) have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge X-ray absorption fine structure spectroscopy ...
متن کاملX-Ray Absorption Near Edge Structure and Mössbauer Spectroscopy in Study of Iron Valence States in Tissues
X-ray absorption near edge structure Fe K-edge spectra and Fe Mössbauer spectra of selected standard compounds were recorded at room temperature. Valence and spin states of Fe in these samples known from Mössbauer spectroscopy were correlated with the shapes of X-ray absorption near edge structure spectra in search of possible application of X-ray absorption near edge structure spectroscopy as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012